Crime scene investigators with larger US metropolitan police departments and state patrols are increasingly deploying 3D laser scanners to tell detailed, data-based stories that will withstand public and legal scrutiny while bringing justice to victims. 3D laser scanning technology is being used to accurately depict the relational aspect of each piece of evidence so investigators can rebuild and reconstruct crime scenes. This is a powerful investigation tool, especially as legal systems grow more comfortable with high-tech evidence in courtrooms.
In this digital age, the use of LiDaR scanners and software are expanding the role of geospatial technology in crime scene investigations. A remote sensing method that uses light in the form of a pulsed laser to measure ranges (variable distances) to the Earth. These light pulses—combined with other data recorded by the airborne system— generate precise, three-dimensional information about the shape of the Earth and its surface characteristics. If you want to know more about LiDaR crime scene visit https://cognitech.com/cognitech-video-active-64/.
This relational aspect is important to investigators because they can capture accurate locations of evidence, reconstruct the scene in its end state and rebuild the circumstances that led to that end. The result is a more comprehensive investigation that goes beyond the capabilities of the traditional forensic tools or the talents of the humans hired to record a scene.
As acceptance grows for high-tech tools in the courtroom, 3D scanning is likely to become standard forensic practice.
Forensics Tools
The documentation of crime scenes is a painstaking process complicated by a short time to collect evidence, logistical challenges of many people working at the scene, and the need to quickly determine what might be relevant in a trial that will not take place until months, or possibly years, later. Traditional forensic tools include cameras (stills and video images), tape measures and measuring wheels.
As geospatial technology has advanced into other industries, it has also entered the forensics investigator’s toolbox, which has grown to include unmanned aerial vehicles (UAVs or ‘drones’), photogrammetric analysis, total stations, GNSS systems and, more recently, 3D laser scanners.
Thanks to built-in integrations, varying geospatial forensics technologies can work together, enabling investigators to collect evidence and create diagrams, animations and fly-through models that tell an accurate story of the events. The models bring clarity and build an understanding of complex testimonies and exhibits, delivering immense value to the criminal justice system.